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We present a reciprocal space technique for the calculation of the Coulomb integral in two dimensions in
systems with reduced periodicity, i.e., finite systems, or systems that are periodic only in one dimension. The
technique consists of cutting off the long-range part of the interaction by modifying the expression for the
Coulomb operator in reciprocal space. The physical result amounts in an effective screening of the spurious
interactions originated by the presence of ghost periodic replicas of the system. This work extends a previous
report �C. A. Rozzi et al., Phys. Rev. B 73, 205119 �2006��, where three-dimensional systems were considered.
We show that the use of the cutoffs dramatically enhances the accuracy of the calculations, and it allows
description of two-dimensional systems of reduced periodicity with substantially less computational effort. In
particular, we consider quantum-dot arrays having potential applications in quantum information technology.
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The interest in low-dimensional electronic structures has
increased steadily during the past few decades. This is
mostly due to breakthroughs in semiconductor technology in
the 1970s and early 1980s. At present, low-dimensional sys-
tems form a significant portion of the whole field of
condensed-matter physics. Some examples are layered semi-
conductor devices such as metal-oxide-semiconductor field
effect transistors, quantum Hall systems, spintronic devices,
and quantum wells, quantum wires, and quantum dots
�QDs�.1

Following the advances in constructing techniques for
single two-dimensional �2D� QD with tunable atomlike prop-
erties, it has become possible to couple QDs to form artificial
“molecules.” Coupled QDs have significant potential for
solid-state quantum computation through, e.g., coherent ma-
nipulation of spins.2 Furthermore, extended lattices or arrays
of QDs have been fabricated,3 which, in addition to the pro-
posed applications in quantum information,4 show interesting
magnetic phase transitions5,6 that may be exploited in quan-
tum transport and spintronics.

From the theoretical point of view, dealing with systems
of arbitrary periodic dimensionality may be complicated. In
the simplest case of a fully periodic lattice of elements, pe-
riodic boundary conditions are applied at every cell border,
and the Bloch’s theorem describes the discrete-translation
invariant form of the orbitals. On the other hand, in all the
cases in which the system has reduced periodicity, the use of
a supercell with periodic boundary conditions in all the di-
rections becomes problematic. In fact, the response function
of a periodic lattice is generally very different from the re-
sponse of a system with reduced periodicity �such as an iso-
lated system, a chain, a slab, etc.� and the convergence of the
fully periodic quantity to the reduced-periodic one as a func-
tion of the supercell size is very slow. A large supercell is a
numerical disadvantage but it is especially necessary to

avoid the influence of the periodic images if long-range op-
erators are used.

The main issue here is indeed the computation of a long-
range operator, i.e., the Hartree �or “Coulomb”� potential,

V�n��r� =� d3r�
n�r��

�r − r��
, �1�

which is ubiquitous in science, and which we study here in
the context of 2D electronic structure calculations. In par-
ticular, we will exemplify our approach by utilizing density-
functional theory �DFT� although the method we propose
can also be useful in different fields. In Fourier space, con-
volution integral �1� is transformed into a trivial product.
This fact adds to the other undoubted advantages of the su-
percell approach such as the natural inclusion of the periodic
boundary conditions, and the existence of very efficient fast
Fourier transform algorithms.

The attempt to retain these advantages, i.e., to compute
the Hartree integral in reciprocal space, has led to the cre-
ation of several cutoff schemes for finite systems, whose
main intent is to provide an effective truncated Coulomb
interaction such that the system becomes unaware of the ex-
istence of its periodic replicas.7–9 More recently, an exact
scheme was proposed to achieve a broader goal,10 namely, to
truncate the Coulomb interaction in a three-dimensional �3D�
system in the dimensions along which the system is con-
fined, leaving it long ranged in the dimensions in which the
system is periodic.

In this Brief Report we show that a similar scheme can be
drawn in a 2D space, allowing us to correct the spurious
supercell effect when treating finite systems and one-
dimensional �1D� chains. In particular we focus on the case
of a single infinite chain of 2D few-electron QDs, which, in
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a classical supercell approach, would mistakenly appear as
periodic system in both directions while it should be treated
as a truly periodic system only along the x direction. We
study the magnetic ground state of this system, and show that
the use of the cutoff allows speeding up of the calculations of
ground-state fundamental quantities such as the Fermi level.
The technique is exact if the computation parameters are
chosen judiciously. The possibility of isolating the chain
from the replicas permits getting an insight about the role of
interchain interaction in determining the conductive or insu-
lating character of the chain.

We follow closely the procedure described in Ref. 10. The
Hartree integral is the convolution of the charge density n
with the Coulomb interaction potential v. In 2D,

V�x,y� =� �
space

n�x�,y��
��x − x��2 + �y − y��2

dx�dy�

=� �
space

n�x�,y��v�r − r��dx�dy�. �2�

We consider the charge density to be in a unit cell. This unit
cell may then be replicated in both directions to fill all 2D
space �the two-dimensional periodic case, or “2D/2D”�, rep-
licated in only one direction �“2D/1D”�, or not replicated at
all �finite case or “2D/zero dimensional �0D�”�. If we move
to reciprocal space, the unit cell is always replicated periodi-
cally in both directions, which is undesired in both the
2D/1D and 2D/0D cases. The Hartree integral in reciprocal
space reduces to the simple multiplication,

V�G� = n�G�v�G� , �3�

where G= �Gx ,Gy� are the reciprocal vectors. The Fourier
transform of v�x ,y� can be readily computed,,

v�Gx,Gy� = �
−�

+�

dx�
−�

+�

dy
ei�Gxx+Gyy�

�x2 + y2
=

2�

G
. �4�

This expression implies full 2D periodicity, and therefore it
contains spurious terms if the periodicity is reduced. Our aim
is to modify the expression of the Coulomb interaction
v�G�→ ṽ�G� to an effectively truncated interaction,

ṽ�r� = �1

r
if r � D ,

0 if r � D ,
	 �5�

for some suitable region D, such that it avoids the interaction
of the “real” cells with the spurious replicas while maintain-
ing all interactions between points in the real cells. In order
to achieve this goal, it will be necessary to increase the size
of the original unit cell.

For finite systems �2D/0D� the cutoff region can be con-
veniently defined as r�R, for some cutoff radius R. We can
then easily perform the Fourier integral in polar coordinates,

ṽ0D�G� = �
0

R

dr�
0

2�

d� exp�iGr cos ��

= 2��
0

R

drJ0�Gr�

= �2�R� 1F2
1

2
;1,

3

2
;−

G2R2

4
� , �6�

where J0 is the Bessel function of the first kind and 1F2 is the
generalized hypergeometric function. Note that the G=0
case is finite and continuous, and poses no difficulty:
ṽ0D�G=0�=2�R. The value of R must be sufficient to con-
tain all possible interactions in the original unit cell where
the charge is contained; if we imagine it to be a square of
radius L, then R=�2L. If we now enlarge this cell �padding
the density with zeros� to L�= �1+�2�L, the spurious replicas
will not interact thanks to the interaction cutoff, and the Har-
tree integration will be exact.

The 2D/1D case is more subtle. We assume the charge
density to be contained in a strip defined by �y��R /2: the
system is a chain of unit cells along the x axis. We define the
cutoff region D as �y��R—and the unit cell is also enlarged
in the y direction to �y��R. It is easy to see that in this
manner, the “ghost” replicas do not interact with the original
chain but the real interactions are preserved. The reciprocal
space expression for the truncated Coulomb potential is

ṽ1D�Gx,Gy� = �
−�

+�

dx�
−R

+R

dy
ei�Gxx+Gyy�

�x2 + y2
�7�

=4�
0

R

dy cos�Gyy�K0��Gxy�� , �8�

where K0 is the modified Bessel function of the second kind.
However, in this case, since limGx→0+ K0�Gxy�=+�, the inte-
gral is undefined on the whole line Gx=0.

In the fully periodic �2D/2D� case, we also have a singu-
lar point at G=0 �see Eq. �4��. If we assume charge neutral-
ity, this singularity poses no problem: in Eq. �3� it multiplies
n�G=0�, which is zero because this is, in fact, the charge
neutrality condition. In the 2D/1D case, we must also see
how these divergent terms affect Eq. �3�, or more precisely
the back Fourier transform

V�r� =� d2Ge−iG·rn�G�v�G� . �9�

In order to see how the infinities appear, we consider the
integral in Eq. �7� for Gx=0, but using a finite integration
domain also in the x direction, −h�x�h. This integral is
convergent. If we perform the integration and retain only the
terms that do not vanish in the limit h→�, we obtain

ṽ1D�0,Gy� � 4 log�2h�sin�GyR�/Gy

− 4�
0

R

dy cos�Gyy�log�y� . �10�

The first term, which we can call v��0,Gy�, diverges as
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h→�. However, it can easily be seen that it can be ignored
if we assume charge neutrality: we perform the Gy integra-
tion in Eq. �9� for Gx=0, considering only the v��0,Gy� term

� dGyv
��0,Gy�n�0,Gy�e−iGyy

= 4 log�2h�� dx��
−R/2

R/2

dy�n�x�,y��� dGy
sin�GyR�

Gy

�e−iGy�y−y��. �11�

Now we have

� dGy
sin�GyR�

Gy
e−iGy�y−y�� = 
�/2 if �y� − y� � R ,

0 otherwise.
�

�12�

In the integral �y���R /2, since the charge is contained in
that region. This is the region of interest, and therefore we
are also interested in looking at the potential only for
�y��R /2. In consequence, �y�−y��R, and we can conclude

� dGyv
��0,Gy�n�0,Gy�e−iGyy

= 2� log�2h�� dx��
−R/2

R/2

dy�n�x�,y�� . �13�

This is obviously zero if we assume charge neutrality. There-
fore, we can ignore the diverging terms and retain only the
regular ones. With this in mind, the case of G=0 is now
trivial: ṽ1D�0,0�=−4R�log R−1�.

To test the cut-off method, we consider 1D QD arrays
similar to those in Ref. 6. Each rectangular unit cell contains
two QDs, and each QD has N electrons bound by a Gaussian
positive background charge density. The total Gaussian back-
ground charge density has the form

nB�r� =
1

�rs
2�

R
exp�−

�r − R�2

Nrs
2 � , �14�

where r= �x ,y�, R= �nax ,0� with n=0,1 ,2 , . . ., and rs=2 is
the average density at the center of the QD. Note the use of
eff. a.u. throughout.11

We solve the Kohn-Sham equations within spin DFT on a
2D grid with and without the cutoff method described above.
In the former case, the system is periodic only in x direction,
whereas in the latter case it is periodic in both x and y direc-
tions. For the exchange and correlation we use the 2D local
spin-density approximation �LSDA� with the parametrization
of the correlation by Attaccalite et al.12 This parametrization
has been shown to be more accurate than the form of Tanatar
and Ceperley13 in the partially spin-polarized regime.14 All
the numerical calculations are done using the OCTOPUS

code.15

In Fig. 1 we show the Fermi energy EF of a QD chain
with three electrons per dot as a function of the lattice con-
stant ay perpendicular to the chain. The lattice constant in the
x direction is fixed to ax=5.06. Using the cutoff method
leads to a very fast convergence so that at ay =3ax the Fermi

energy is converged to six digits. In contrast, without cutoff,
i.e., the system being periodic in both directions, a much
larger supercell is needed in order to achieve comparable
accuracy. This is due to the long-range Coulomb interaction
between parallel QD chains. Therefore, for accurate calcula-
tions the cutoff scheme is essential in reducing the cell size
and thus the computational cost.

Next we change our attention to the physical effects
caused by multiple parallel QD chains in comparison with a
single QD chain. In the former case no cutoff is used so that
for ay =ax we have parallel chains located at y=nax,
n= �1, �2, . . .. In the latter case �single chain� we use the
cut-off method with ay =3ax to guarantee a high precision
�see Fig. 1�.

In Fig. 2 we plot the band structure for a QD chain with
three electrons per dot at ax=5.06 �left panel�, corresponding
to the system considered in Fig. 1. We find that the presence
of parallel chains leads to a rather minor effect on the bands.
The qualitative shape of the structure is very similar, and the
shift in the bands due to the interchain effects is of the same
order of magnitude as the shift in EF.

Figure 2 can be also directly compared with the results of
Ref. 6. Overall, we find an excellent agreement, also in the
case of a larger lattice constant ax=8.55 �right panel�. Here
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FIG. 1. �Color online� Fermi energy of a quantum-dot chain
with three electrons per dot as a function of the supercell size per-
pendicular to the chain.
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FIG. 2. �Color online� Band structure at lattice constants
ax=5.06 �left� and ax=8.55 �right� for a quantum-dot chain with
three electrons in each dot. The dotted lines in the left panel corre-
spond to the result with multiple parallel chains at y=nax=nay,
n= �1, �2, . . .. The straight lines correspond to the Fermi
energies.
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the spin degeneracy is lifted due to the exchange effect,
which leads to a magnetic ground state.6

Next we consider the interchain effects on phase transi-
tions in QD chains. As noted by Kärkkäinen et al.,6 the
chains have a rich phase diagram with respect to the electron
number N and the lattice constant ax. In general, increasing
ax leads to insulating behavior and/or magnetism, i.e., spin
polarization, depending on N. In Fig. 3 we show the band
structure at ax=5 for two electrons per dot, calculated with
the cutoff procedure for a single chain and without the cutoff
for multiple parallel chains located at y=nax=nay,
n= �1, �2, . . .. The single QD chain is clearly a metal with
bands crossing the Fermi level. In contrast the presence of
periodic replicas of the chain opens up a gap across the
Fermi level so that the system becomes an insulator. The
physical origin of the effect is the increased localization due
to Coulomb repulsion between the replicas of the chain.
Similarly, the single QD chain �left panel in Fig. 3� becomes
an insulator at around ax=6, when the dots are more isolated.

Finally, we have also examined the interchain effects on
the magnetism of QD wires. Generally, the spin polarization

is relatively stable: for N=1, . . . ,5 we find similar spin po-
larization as a function of the lattice constant regardless of
the presence of parallel QD chains. In all cases the magneti-
zation is in a qualitative agreement with the results in Ref. 6,
minor differences arising from the use of the LSDA param-
etrization by Attaccalite et al.12 instead of the one by Tanatar
and Ceperley.13 However, further studies are required regard-
ing the validity of the LSDA in the high-correlation regime
and/or in the presence of magnetic fields. These would also
be ideal systems to test the 2D density functionals recently
developed.16,17

The reciprocal space is the natural venue for treating pe-
riodic systems. If the periodicity is not complete �the system
is not periodic in all the space dimensions� or even absent,
the computations require the use of a large supercell in order
to avoid the spurious interactions due to ghost system repli-
cas; this is specially manifested in the computation of the
Coulomb, or the Hartree, integral, which is a trivial multipli-
cation if we use plane waves. For 3D systems, it has been
shown that the use of a screened Coulomb interaction greatly
improves the accuracy in the calculation of ground-state
quantities, and substantially simplifies the evaluation of
excited-state properties of reduced-periodicity systems. In
this Brief Report we have shown that the same ideas can be
applied to the case of the 2D electron gas; we have provided
the relevant formulas for finite systems in 2D, and for sys-
tems that are periodic in only one dimension.

Moreover, the corrective cutoffs are exact and rather
straightforward to apply. We have demonstrated their effec-
tiveness by computing band structures and Fermi energies of
one-dimensional periodic arrays of quantum dots formed by
the confinement of two-dimensional electron gas. We expect
that our technique will be of great interest for studying these
systems of “artificial molecules” and “crystals” although the
ubiquity of the problem we have faced will probably make
our technique relevant in other fields, as well.
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FIG. 3. �Color online� Band structure at a lattice constant
ax=5 for quantum-dot chains with two electrons in each dot. The
left and right panels show the results for single and multiple chains,
leading to metallic and insulating band structures, respectively. In
the latter case, the parallel chains are located at y=nax=nay,
n= �1, �2, . . ..
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